

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Cine-MR Detection of Geometrical Size Anomalies in the Descending Chest Aortic Artery for Some Heart Pathologies.

Paolo Brunello^a; Flaviano Coletta^b

^a Clinica Otorinolaringoiatrica of the University, University of Padua, ITALY ^b Department of Physical Chemistry and CSSRM of the Italian CNR, University of Padua, ITALY

To cite this Article Brunello, Paolo and Coletta, Flaviano(1998) 'Cine-MR Detection of Geometrical Size Anomalies in the Descending Chest Aortic Artery for Some Heart Pathologies.', *Spectroscopy Letters*, 31: 1, 135 — 145

To link to this Article: DOI: 10.1080/00387019808006767

URL: <http://dx.doi.org/10.1080/00387019808006767>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**CINE - MR DETECTION OF GEOMETRICAL SIZE
ANOMALIES IN THE DESCENDING CHEST AORTHIC
ARTERY FOR SOME HEART PATHOLOGIES.**

KEY WORDS : Cine-MR, Chest aortic artery aneurysm , Right atrial mixoma.

Paolo Brunello (*)
Clinica Otorinolaringoiatrica of the University.

Flaviano Coletta
Department of Physical Chemistry and CSSRM of the Italian CNR.

University of Padua , ITALY

ABSTRACT

In this MRI work the Fast Gradient - Echo technique has been applied to the detection of the geometrical and elastic properties of the chest aortic descending artery to check probable troubles in the blood flux which subtend several heart pathologies. The average diameter and the time variations of the aortic vessel have been measured in the axial scanning plane to minimize the experimental

(*) Author to whom correspondence should be addressed :

Dr. P. Brunello
Clinica Otorinolaringoiatrica dell'Università di Padova
Via Giustiniani 2
35131 Padova ITALIA

errors. From the analysis of the vessel average diameter and the related root mean square deviation, a parameter named Contractility has been defined , in close relation with the elastic properties of the aortic vessel. This parameter measured in patients affected from heavy cardiac pathologies such as aortic arc aneurysm and right atrial mixoma shows remarkable variations when compared to the values obtained in healthy subjects. The use of the Contractility is suggested for a quick MRI determination of these cardiocirculatory pathologies.

INTRODUCTION

Recently ^{1, 2, 3, 4, 5} the MRI technique has been applied, successfully, to the in vivo acquisition of well detailed images of the heart region both in healthy and pathologic state. The experimental shortcomings to obtain the best possible MRI pictures with the maximum reduction of artifacts , due either to the in time heart muscle constant pumping activity with the simultaneous drawback of the complicate hydrodynamics of the blood high rate flow and either to the breathing action of the patient under test , have been overcome with the discovery of fast signal averaging techniques which reduce the clinic test time from 17 to about 3 minutes ^{6, 7, 8} . In this way the psychological stress particularly intense in claustrophobic patients is severely reduced. In this preliminary work we have measured the average diameter of the chest descending aortic artery in the arc section. The measures are complicated from the blood dynamics in uneven pulsed motion with appreciable deviation from the idealized state of the newtonian fluid in condition of laminar flux. In such a case we are intrigued from the presence of whirlwind motions with Reynolds number ≥ 3000 , as reported in literature , ^{9, 10} which origin either in the pulse frequency variations of the cardiac muscle than in the lumen variations of the aortic artery. The intensities of the MRI signals are considerably dependent from all these flow conditions , but allowing to the relatively large lumen of the aortic artery compared to the all other blood vessels and using ultrafast techniques in the collection of the experimental data , which practically cancel every artifact with origin in the body intentional and unintentional movements, we have been able to effect the measurements reported in this work assuming a quasi newtonian blood flux behaviour¹⁰ . The experimental data reported here have been always obtained with the MRI instrument triggered from the voltage peak of the R wave response of a coupled ECG device , hence always on the same phase of the heart cycle . We have thus studied the aortic artery diameter and its time variations for an ensemble of subjects with an high degree of statistical variance such as the age , sex and different heart pathologies comparing the results to a control group set up with healthy patients of both sex with variable age. To do so , we have adopted the CINE-MR method well described in literature ^{4, 5, 6} . The results obtained in such a way with the definition of an elastic parameter, that we have called

Contractility, are encouraging mainly for the cases in which are present pathologies which change the elastic behaviour of the aortic artery as described in the next sections of the work. In this study we have checked several heart and aortic artery diseases ⁶ such as benign and malignant tumours, coronary strokes, angina pectoris and pericarditis ⁷, verifying variations in the Contractility which are negligible in the coronary strokes and the tumoral diseases but very important for the aortic aneurysms and right atrial myxoma .

EXPERIMENTAL SECTION

Forty patients, bedridden in our hospital ,with diverse heart pathologies have been the subject of the MRI session with an instrument Siemens at the static magnetic field of 1.5 T and equipped with a suitable cardio-coil. The instrument is coupled to an ECG device and the peak voltage of the heart R wave triggers the start of the MRI pulses sequence with a time delay of about one second between successive scans. With the application of three field gradients directed properly along the cartesian axes, G_z slice width selection gradient G_y phase encoding gradient and G_x read gradient , we have been able to obtain spatial resolution of one millimeter voxel. As outlined in the introduction , with the aim to observe the aortic artery geometry ,we have applied the most suitable slice scan technique i.e. the Gradient-Echo pulse sequence and its known implements ^{2,7,9} . The aortic artery images have been collected by using the following parameters :

- 1) Repetition time TR for one image acquisition : 0.3 s.
- 2) Signal averaging number N_s : 4.
- 3) Acquisition matrix dimension Dim [m] : 165×256 .

Hence the total acquisition time is :

$$\text{Total time} = \text{TR} \times N_s \times \text{Dim} [\text{m}] \quad (1.1)$$

To further reduce the scan time we have used flip-angle in the interval between 30° - 60° as described in literature ⁸ together with the simultaneous perfusion of paramagnetic salt T_1 relaxation time relaxer as the Gd-DTPA : this protocol has been used for all the patients examined . In this way as can be calculated from the relationship (1.1) we have obtained total scan times of about three minutes . Patients suffering different pathologies related to the heart region have been the object of quantitative aortic artery measurements . The number of data acquired has statistical relevance for some heart damages while others are only informative . In general we have obtained 14 aortic artery sections for any single patient in any session in order to follow the time variation of the artery diameter . Selected

patients have been resampled at random after an opportune time delay for a further statistical check on the measures . The aortic artery cross section images appear with a fine contrast with neat boundary zone . By using a commercial Image Treatment program we have determined for every artery cross section the average diameter . A greater confidence has been derived by measuring the average artery diameter in cross sections shifted a bit up and down from the aortic region selected . The difference is totally negligible resulting smaller than one millimeter .

All the experimental significative values are reported in the tables of the next section together with the values of a parameter , called by us , Contractility and defined as :

$$C = \frac{<\sigma>}{<d>} \quad (1.2)$$

where $<\sigma>$ is the population average root mean square deviation for each representative measurement and $<d>$ is the corresponding aortic average value . We also report the values of another parameter :

$$C_r = \frac{C_x - C_0}{C_0} \quad (1.3)$$

which is related to the normalized relative deviation of the mean Contractility C_x of the pathologic aortic artery compared to the healthy one C_0 , assumed as reference.

RESULTS AND DISCUSSION

In the Table 1 are reported the results of the our work on the chest descending aortic artery diameters of the healthy control group ad obtained from the MRI Cine-MR.

Looking to this table we observe the nearly invariance with the sex and the age of this one and all the related parameters σ and C whose average values are tabulated in the third row of the Table 2 . It derives that the healthy state of the heart does not cause any strain to the aortic artery geometry and these results describe the appropriate artery behaviour. In the Table 2 the overall population averages are reported for the same artery in different heart pathologies. In the same table the experimental values of the absolute and relative aortic Contractilities are given.

TABLE 1

Characteristic Contractilities C for healthy patients.

	Diagnosis	d (mm)	σ (mm)	C
Pat. n. 1 M. Age 16 Resampled	Healthy	19.64	0.90	0.05
		19.99	1.24	0.06
		20.86	1.16	0.06
Pat. n. 4 M. Age 48	"	22.38	0.95	0.04
Pat. n. 5 M. Age 28	"	20.41	0.82	0.04
Pat. 10 W. Age 50 Resampled	"	20.72	1.10	0.05
		20.29	1.15	0.06
		20.37	0.98	0.05
Pat. n. 25 M. Age 19 Resampled	"	21.58	0.96	0.04
		21.01	1.12	0.05
		20.70	1.21	0.06
Pat. n. 29 m. Age 44	"	22.99	1.90	0.09
Pat. 40 W. Age 36	"	22.99	1.90	0.09
Pat. 3 m. Age 55	"	20.31	1.96	0.10

We emphasize the fact that for each pathology studied the number of the cases sampled varies between one and sixteen. The single case are without statistical significance and are quoted only for the sake of information. The other items, i.e. the samples tagged healthy, coronary, right atrial mixoma and particularly the aortic arc aneurysm are collected over a sufficient samples number to retain a degree of statistical validity. As a matter of fact, for the healthy patients control group we observe the lowest magnitudes for all the relevant parameters $\langle d \rangle$, $\langle \sigma \rangle$, C and C_R . In all other heart pathologies the measured parameters vary slightly with respect to that obtained for the control group with the only exception in the case of patient affected from angina which show really a three millimeter decrease in the aortic artery diameter. On the contrary great variation are found for the tumoural form, nevertheless present in only one case and for the right atrial mixoma in a relatively sufficient number of cases. In

TABLE 2

MRI values of the average diameter of the chest descending aortic artery $\langle d \rangle$, root mean square deviation $\langle \sigma \rangle$, Contractility C and deviation C_r in several pathologies of the cardiac region .

Samples Number	Diagnosis	$\langle d \rangle$ (mm)	$\langle \sigma \rangle$ (mm)	C	C_r
1	Angina	17.29	2.38	0.138	1.51
1	Stenosis	20.06	1.14	0.057	0.4
8	Healthy	20.91	1.14	0.055	0.00
1	Bypass	20.91	2.62	0.125	1.27
3	Restricted pericar.	22.34	1.53	0.07	0.3
2	Sarcoma	24.31	1.20	0.05	-0.10
2	Right Ventr. Miocard.	25.10	1.31	0.05	-0.10
1	Timoma	30.00	2.4	0.08	0.46
6	Right Atrial Mixoma	30..55	2.65	0.152	1.77
16	Aortic Arc Aneurysm	32.63	7.50	0.202	2.67
8	Coronary	22.98	1.70	0.07	0.3

in this work the most high variations of all the parameters are found for the case of aortic artery aneurysm. The Table 3 reveals for sixteen patients the details of the aortic artery behaviour in this disease. The aneurysm struck patients show artery diameters which span the interval with boundaries included between 21 and 45 millimeters together with remarkable values of σ . The dramatic case of σ equal to 27.3 millimeters in the same table at the row 5 belongs to a patient died few days after the MRI check. The values of the artery contractility C vary between a lower limit of 0.04 practically equal to that in the healthy control group and the upper limit of 0.24 which is about fivefold greater than the average value reported in the Table 2 for the control group. Moreover the root mean square deviation σ reaches the maximum peak at 9.54 eight times greater than that in the healthy control group. In the Figure 1 the time response of the aortic artery diameter for some selected heart pathologies is plotted against the successive slice number i.e the elapsed time between different measures. The plot for the healthy patients is a straight line while that for patients affected from right atrial mixoma and aortic arc aneurysm show an oscillating trend much more enhanced for the last disease. The time average values for the two heart damages of respectively 30.34 ± 5.32 mm and 45.1 ± 9.2 mm are statistically significant with respect to the control group value of 19.6 ± 1.7 mm. On the base of these experimental findings we have discovered that there is an approximate linear relationship between $\langle \sigma \rangle$ and $\langle d \rangle$:

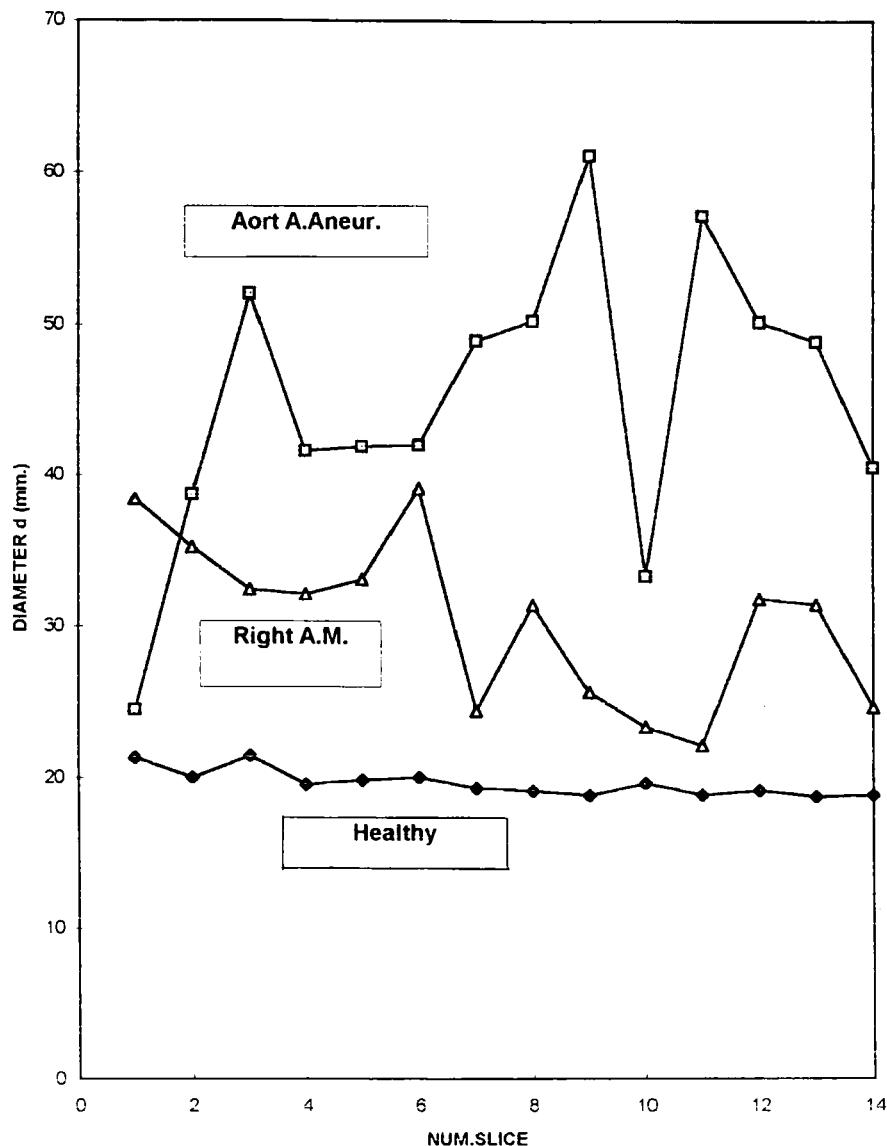
$$\langle \sigma \rangle = -6.43 + 0.343 \langle d \rangle \quad (1.4)$$

with the correlation coefficient $R = 0.77$. This linear behaviour is foreseen in the flow dynamics for what concerns the motion of a fluid in a deformable pipe¹⁰.

This linear relation is derived with the exclusion of the anomalous cases of the angina and of the dubious cases of bypass operated patient.

On the base of these experiments we can suggest to the medical community that the MRI determination of the arterial diameter, hence the contractility index, can be one useful way easy to perform and not too much time consuming in the diagnosis of some arterial pathologies, specially for that which force heavy burden to the blood flow in the circulation network.

In the future we think to extend this MRI method to collect further informations on the greater heart vessels and on the other different big blood flow pipes in the human body specially in what concerns the arteries which feed the brain.


CONCLUSIONS

All the previous considerations suggest a check protocol suitable to every heart medical center equipped with the required MRI instruments. In this way it is possible to study anomalies of the blood flow in strained arteries

TABLE 3

Characteristic Contractilities C for patients affected from aneurysm of aortic artery.

	Diagnosis	d (mm)	σ (mm)	C
Pat. n. 2 M. Age 66	Aortic Arc Aneurysm	21.61	1.95	0.09
Pat. n. 9 W. Age 76 Resampled	"	27.81 27.46 28.39	0.99 1.28 2.78	0.04 0.05 0.10
Pat. n. 12 W. Age 36	"	28.68	6.44	0.2
Pat. n. 13 W. Age 51	"	32.49	3.58	0.11
Pat. n. 15 W. Age 74	"	47.71	27.29	0.57
Pat. n. 16 W. Age 74	"	32.59	5.03	0.15
Pat. n. 18 M. Age 49	"	44.35	8.20	0.18
Pat. n. 33 W. Age 73	"	44.85	8.20	0.19
Pat. n. 34 M. Age 60	"	28.29	5.67	0.20
Pat. n. 35 M. Age 40	"	45.04	9.54	0.24
Pat. n. 36 M. Age 55	"	39.72	9.38	0.24
Pat. n. 37 M. Age 57	"	35.8	6.44	0.19

FIGURE 1.

Time behaviour of the aortic artery diameter for three heart region pathologies.

with the use of a fast MRI tecnique such as the Cine-MR , measuring in few minutes important artery parameters, as we have done for the aorthic artery diameter in selected regions, deriving thus the artery Contractility for a quick information on the overall artery state and it eventual troubles.

For this kind of check we recommend to couple always the MRI session with the ECG response to establish the images time scale when the patient is monitored for relatively long time in order to establish the artery dynamical behaviour.

ACKNOWLEDGEMENTS

One author, F.C., thanks the Director of the CSSRME of the Italian CNR Prof. Giovanni Giacometti for the kind permission to this contribution. The other author, P.B., acknowledges Prof. E. Arslan , Director of the Clinica Otorinolaringoiatrica of the Padua University for the friendly support and the Siemens firm for the constant assistance in the use of the MRI instrument .

REFERENCES

1. Casolo G.C., Bartolozzi C. , Zampa V. *La Risonanza Magnetica del cuore , tecnica di studio ed applicazioni cliniche. Diagnostica con RM S.I.R.M.* Firenze : Ed. Bracco , 1990.
2. Deprè C., Melin J.A., Wijns W., Demeure R., Hammer F., Pringot J. *Atlas of cardiac MR Imaging with Anatomical Correlation.* Boston : Kluwer Academic Publishers , 1991.
3. Kaufmann L., Crooks I., Sheldon E. *Evaluation of NMR for detection and quantification of obstruction in vessels.* *J. Comput. Assist. Tomogr.* 1988 ; 6 : 180.
4. Van Der Wall E.E., De Roos A. *Magnetic Resonance Imaging: A new approach for evaluating coronary artery disease?* *Amer. J. Card.* 1992 ; 4 , Part 1 : 1203.
5. Di Cesare E., Marsili P., Di Rienzi P., Pavone P. *La Risonanza Magnetica nella caratterizzazione delle lesioni arteriosclerotiche.* *Radiol. Med.* 1989 ; 78 : 190.
6. Aurigemma G.P., Reichek N. *La Cine Risonanza Magnetica nella valutazione della pervietà dei bypass.* *Primary Cardiology* 1992 ; 4 : 248.

7. Fleccher B.D., Jacobstein M.D. : Gated Magnetic Resonance Imaging of congenital cardiac malformation.
Radiology 1984 ; 150 : 137.
8. Wherli W., Macfacfall J.R., Newton T.H. Parameters determining the appearance of NMR images.
General Electric Internal Communications.
9. Goldmann M. Quantum description of high-resolution NMR in liquids.
Oxford : Clarendon Press , 1993.
10. Bird R.B., Steward W.E. , Lightfoot E.N. Fenomeni di trasporto.
Milano : C.E.A., 1988 : 1- 30.

Date Received: June 12, 1997

Date Accepted: July 28, 1997